Crystal Structure:

- Lattice translation vector:

$$
\vec{T}=n_{1} \vec{a}+n_{2} \vec{b}+n_{3} \vec{c}
$$

Where, $\mathrm{n}_{1}, \mathrm{n}_{2}$ and n_{3} are arbitrary constants and $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are lattice parameters.

- Symmetry operations:

Four major types of symmetry operations-
(i) Translation operation (Translational symmetry)
(ii) Rotation operation (Rotational symmetry)

- 1- fold, 2- fold, 3-fold, 4-fold, 6-fold rotational symmetry operations are possible.
- 5- fold rotational symmetry operation is not possible.
(iii) Inversion operation (Inversion symmetry)
(iv) Reflection symmetry (Mirror symmetry)
- Bravais Lattices:

There are 4 two dimensional crystal systems and 5 Bravais lattices in 2

> Dimension.
(a) Oblique lattice ------ $a \neq b, \gamma \neq 90^{\circ}$
(b) Square lattice ------ $a=b, \gamma=90^{\circ}$
(c) Hexagonal lattice ------ $a=b, \gamma=120^{\circ}$
(d) Rectangular lattice ------- (i) Rectangular Primitive $\left(a \neq b, \gamma=90^{\circ}\right)$
(ii) Rectangular centred $\left(a \neq b, \gamma=90^{\circ}\right)$

- There are 7 three dimensional lattice systems and 14 Bravais lattices in 3 dimension.
(i) Cubic lattice ------- $a=b=c, \alpha=\beta=\gamma=90^{\circ} \begin{array}{r}\square \\ \text { Simple Cubic } \\ \text { Body centred cubic } \\ \text { Face centred cubic }\end{array}$
(ii)Tetragonal ----------- $a=b \neq c, \alpha=\beta=\gamma=90^{\circ}$

\square	Simple
	Body centred

(iii) Orthorhombic -------- $a \neq b \neq c, \alpha=\beta=\gamma=90^{\circ}$

(iv) Rhombohedral or trigonal \qquad $a=b=c, \alpha=\beta=\gamma \neq 90^{\circ}$ \qquad Simple
(v) Hexagonal \qquad $a=b \neq c, \alpha=\beta=90^{\circ}, \gamma=120^{\circ}$ \qquad Simple
(vi) Monoclinic \qquad $a \neq b \neq c, \alpha=\gamma=90^{\circ} \neq \beta$

Simple End centred
(vii) Triclinic \qquad $a \neq b \neq c, \alpha \neq \beta \neq \gamma \neq 90^{\circ}$ \qquad Simple

- The number of atoms per unit cell:

For simple cubic \qquad
For bcc 02

For fcc 04

- Atomic radius of:

Simple cubic structure, $r=\frac{a}{2}$
Body centred cubic structure, $r=\frac{\sqrt{3}}{4} a$
Face centred cubic structure, $r=\frac{a}{2 \sqrt{2}}$
Where, a is the lattice constant.

- Packing fraction: It is defined as the ratio of the volume occupied by the atoms present in a unit cell to the total volume of the unit cell.
- Packing fraction of:

Simple cubic $=52 \%$
Body centred cubic $=68 \%$
Face centred cubic $=74 \%$

Rules for finding Miller Indices
\checkmark Find the intercepts of the plane on the crystallographic axes
\checkmark Take reciprocals of these intercepts
\checkmark Simplify to remove fraction

Find the Miller Indices of a plane having intercepts $3 a, 3 b, 2 c$
$>$ Intercepts: 3, 3, 2
$>$ Reciprocals: $\frac{1}{3}, \frac{1}{3}, \frac{1}{2}$
> Simplification: 2, 2, 3
The Miller Indices (223)

Interplaner spacing of a set of parallel planes with Miller Indices (hkl)

$$
d=\frac{1}{\left(\frac{h^{2}}{a^{2}}+\frac{k^{2}}{b^{2}}+\frac{l^{2}}{c^{2}}\right)^{\frac{1}{2}}}
$$

For a cubic crystal $a=b=c$

$$
\therefore d=\frac{a}{\left(h^{2}+k^{2}+l^{2}\right)^{\frac{1}{2}}}
$$

Find the interplaner spacing between the (221) planes of a cubic lattice of length 450 pm .
$>$ Here, $\mathrm{h}=2, \mathrm{k}=2, \mathrm{l}=1$ and $a=450 \mathrm{pm}=450 \times 10^{-12} \mathrm{~m}$

$$
\therefore d=\frac{450 \times 10^{-12}}{\left(2^{2}+2^{2}+1^{2}\right)^{\frac{1}{2}}}=\frac{450 \times 10^{-12}}{3}=150 \mathrm{pm}
$$

Angle between two planes with Miller indices $\left(h_{1} k_{1} l_{1}\right)$ and $\left(h_{2} k_{2} l_{2}\right)$

$$
\cos \theta=\frac{h_{1} h_{2}+k_{1} k_{2}+l_{1} l_{2}}{\left.\sqrt{\left({h_{1}^{2}}^{2}\right.}+{k_{1}^{2}}^{2}+l_{1}^{2}\right) \sqrt{\left({h_{2}^{2}}^{2}\right.}+{\left.k_{2}^{2}+l_{2}^{2}\right)}^{2}}
$$

- In a cubic unit cell, find the angle between the normal to the planes (111) and (121).
$>$ The normals to the planes (111) and (121) are directions [111] and [121]. Let θ be the angle between the normals.

$$
\begin{aligned}
& \cos \theta=\frac{h_{1} h_{2}+k_{1} k_{2}+l_{1} l_{2}}{\sqrt{\left({h_{1}^{2}}^{2}\right.}+{\left.\left.k_{1}^{2}+l_{1}^{2}\right) \sqrt{\left(h_{2}^{2}\right.}+{k_{2}^{2}}^{2}+l_{2}^{2}\right)}_{\left.\left.\sqrt{\left(1^{2}\right.}+1^{2}+1^{2}\right) \sqrt{\left(1^{2}\right.}+2^{2}+1^{2}\right)}=0.9428} \\
& \theta=\cos ^{-1}(0.9428)
\end{aligned}
$$

Relation between lattice constant and density

$$
\rho=\frac{n M}{N a^{3}}
$$

$$
\text { where }, n=\text { no.of atoms per unit cell }
$$

$\mathrm{M}=$ Atomic weight, $\mathrm{N}=$ Avogadro's number, $a=$ lattice constant, $\rho=$ density.

The lattice constant of iron (in bcc) is $2.86 \AA$. What is the density of iron, taking the atomic weight of iron as 55.85 amu .

$$
\text { Given, } a=2.86 \AA=2.86 \times 10^{-8} \mathrm{~cm}
$$

For $\mathrm{bcc}, \mathrm{n}=2, \mathrm{M}=55.86 \mathrm{amu}=55.86 \mathrm{~g} / \mathrm{mol}, \mathrm{N}=6.023 \times 10^{23}$

$$
\therefore \rho=\frac{n M}{N a^{3}}=\frac{2 \times 55.85}{6.023 \times 10^{23} \times\left(2.86 \times 10^{-8}\right)^{3}}=7.93 \frac{g}{c c}
$$

X- rays are used to determine the structure of solids and for the study of X-ray spectroscopy. X- rays have the same order of wavelength as the atomic diameter or interplaner spacing. Thus a crystal acts as a three dimensional grating for X-rays.

Bragg's law: $2 d \sin \theta=n \lambda$, Where,

$$
d=\text { interplaner spacing }, \lambda=\text { wavelength of } X-\text { rays, } \theta=\text { Angle of incidence }
$$

The spacing between successive planes in NaCl is $2.82 \AA$. X- rays incident on the surface of the crystal is found to give rise to $1^{\text {st }}$ order Bragg's reflection at glancing angle of 8.8^{0}, calculate the wavelength of x-rays. (Given, $\sin 8.8^{0}=0.152$)

$$
\begin{gathered}
>\text { Given, } \mathrm{d}=2.82 \AA=2.82 \times 10^{-10} \mathrm{~m}, \mathrm{n}=1, \theta=8.8^{0}, \sin 8.8^{0}=0.152 \\
\therefore 2 d \sin \theta=n \lambda \\
=>2 \times 2.82 \times 10^{-10} \times 0.152=1 \times \lambda \\
\lambda=8.5 \times 10^{-9} \mathrm{~m}
\end{gathered}
$$

Reciprocal lattice vector, $G=h a^{*}+k b^{*}+l c^{*}$
Where, $a^{*}=2 \pi \frac{b \times c}{a .(b \times c)}, b^{*}=2 \pi \frac{c \times a}{a .(b \times c)}, c^{*}=2 \pi \frac{a \times b}{a .(b \times c)}$,
Bragg's law in reciprocal lattice, $2 \vec{k} \cdot \vec{G}+G^{2}=0$

- Reciprocal lattice:

For simple cubic, $a^{*}=\frac{2 \pi}{a} \hat{\imath}, b^{*}=\frac{2 \pi}{a} \hat{\jmath}, c^{*}=\frac{2 \pi}{a} \hat{k}$
For bcc, $a^{*}=\frac{2 \pi}{a}(\hat{\imath}+\hat{\jmath}), b^{*}=\frac{2 \pi}{a}(\hat{\jmath}+\hat{k}), c^{*}=\frac{2 \pi}{a}(\hat{k}+\hat{\imath})$
For fcc, $a^{*}=\frac{2 \pi}{a}(\hat{\imath}+\hat{\jmath}-\hat{k}), b^{*}=\frac{2 \pi}{a}(-\hat{\imath}+\hat{\jmath}+\hat{k}), c^{*}=\frac{2 \pi}{a}(\hat{\imath}-\hat{\jmath}+\hat{k})$

Simple cubic lattice is self reciprocal whereas, bcc and fcc lattices are reciprocal to each other.

- Atomic scattering factor, $f=\frac{\text { amplitude of radiation scattered from an atom }}{\text { amplitude of radiation scattered from an electron }}$

Geometrical structure factor,

$$
F=\frac{\text { amplitude of radiation scattered by the entire unit cell }}{\text { amplitude of radiation scattered by a point electron at the origin }}
$$

- Brillouine zone: It is the locus of all those k-values in the reciprocal lattice which are Bragg reflected.

