NORTH GAUHATI COLLEGE

PHYSICS DEPARTMENT

ASSISGNMENT-2025

PAPER: ELECTROMAGNETIC THEORY

SEMESTER: 3rd SEMESTER

Total Mark: 15 Last date of submission: 20/11/2025

- 1. In a medium of dielectric constant 5, the maximum displacement current is equal to the maximum displacement current at a frequency of 1 MHz. What is the conductivity of the medium?
- An em wave is incident normally on the surface of water of refractive index 1.33. Calculate the percentage of incident intensity transmitted into water.
- 3. What should be the angle of sun above the horizon, so that the sunlight reflected from the surface of water of a still lake is plane polarized? (Refractive index of water=1.33)
- 4. The electric field of a plane wave in a sea water at its surface (z=0) is given by $\vec{E} = \hat{i} \, 100 \cos \left(10^7 \pi \, t\right) \, \text{V/m}.$

For sea water, $\varepsilon = 72\varepsilon_0 \, \text{F/m}$

$$\mu = 4\pi \times 10^{-7} \, \text{H/m}$$

$$\sigma = 4(\Omega m)^{-1}$$

- a) Determine whether sea water acts as a good conductor or not.
- b) Find the phase velocity and the skin depth.
- c) At what depth below the surface does the amplitude \vec{E} drop to 1% of its value at the surface.
- 5. The electric field \vec{E} of a plane wave in air is given by

1+2+2=5

$$\vec{E} = \hat{i} 4 \times 10^{-6} \cos(10^7 \pi t - kz) + \hat{j} 4 \times 10^{-6} \sin(10^7 \pi t - kz) V/m.$$

Find the value of k, the magnetic field and the Poynting vector.

Note: The assignment must be submitted to Dr. Dhrubajit Kalita on or before 20/11/2025